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ABSTRACT

Background. Rodent studies are a vital step in the develop-
ment of novel anticancer therapeutics and are used in
pharmacokinetic (PK), toxicology, and efficacy studies.
Traditionally, anticancer drug development has relied on
xenograft implantation of human cancer cell lines in im-
munocompromised mice for efficacy screening of a candi-
date compound. The usefulness of xenograft models for
efficacy testing, however, has been questioned, whereas ge-
netically engineered mouse models (GEMMs) and ortho-
topic syngeneic transplants (OSTs) may offer some
advantages for efficacy assessment. A critical factor influ-
encing the predictability of rodent tumor models is drug
PKs, but a comprehensive comparison of plasma and tu-
mor PK parameters among xenograft models, OSTs,
GEMMs, and human patients has not been performed.

Methods. In this work, we evaluated the plasma and

tumor dispositions of an antimelanoma agent, carbopla-
tin, in patients with cutaneous melanoma compared with
four different murine melanoma models (one GEMM,
one human cell line xenograft, and two OSTs).

Results. Using microdialysis to sample carboplatin tu-
mor disposition, we found that OSTs and xenografts were
poor predictors of drug exposure in human tumors,
whereas the GEMM model exhibited PK parameters sim-
ilar to those seen in human tumors.

Conclusions. The tumor PKs of carboplatin in a
GEMM of melanoma more closely resembles the tumor
disposition in patients with melanoma than transplanted
tumor models. GEMMs show promise in becoming an
improved prediction model for intratumoral PKs and
response in patients with solid tumors. The Oncologist
2012;17:000–000

INTRODUCTION
Rodent studies are a vital step in the development of novel an-
ticancer therapeutics and are employed to study the pharmaco-
kinetics (PKs), pharmacodynamics, toxicology, and efficacy

of potential anticancer agents. Rodent models of cancer in-
clude xenograft models (transplant of cells from one species
into another species, e.g., human into mouse), orthotopic syn-
geneic transplant (OST) models (orthotopic transplant of syn-
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geneic passaged tumor cells into the relevant tissue of
genetically identical recipients), and genetically engineered
mouse models (GEMMs), in which tumors arise autochtho-
nously. Traditionally, the standard anticancer drug develop-
ment pipeline has relied on xenograft implantation of human
cancer cell lines in immunocompromised mice as the primary
in vivo screen to determine initial PKs, safety, efficacy, and
mechanism of action of a candidate compound. However, with
too few predictable achievements and many notable failures,
the usefulness of xenograft models for determining the thera-
peutic activity of a novel compound has begun to be ques-
tioned [1– 4]. More recently, the use of cancer GEMMs is
gaining popularity as an alternative to xenograft models for bi-
ological and therapeutic investigation. Although GEMMs are
proven tools for elucidating the molecular determinants of tu-
mor genesis, their ability to predict an agent’s clinical activity
is less clear, but some studies have shown notable successes
[5–8].

There are several relevant physiological differences among
GEMMs, OSTs, and xenograft tumors with regard to their util-
ity in efficacy testing. For example, in contrast to xenograft
models, OST and GEMM tumors occur in animals with an in-
tact immune system and unperturbed DNA repair mechanisms.
Additionally, because GEMMs rely on the accumulation of
stochastic genetic events for tumor progression, these models
may better recapitulate the stepwise progression and tumor
heterogeneity of human solid tumors. Furthermore, because
cancers occur autochthonously in these models, GEMMs ac-
curately maintain the physiologic tumor–stroma interactions
found in human cancer. Throughout the processes of tumor ini-
tiation, progression, and maintenance, the microenvironment
plays a critical role in tumor development [9, 10]. Additional
differences include the relationship between host and tumor
cells, tumor vascularity, capillary permeability, and tumor in-
terstitial pressure.

These differences between tumor development in xeno-
grafts and GEMMs have been suggested to explain differences
observed in the role of hypoxia and inhibitor of DNA-binding/
differentiation (Id) proteins in tumor angiogenesis [11, 12],
which may have important implications for drug delivery and
response. Similarly, differences in the gene expression of tu-
mor-associated macrophages (TAMs) in xenograft versus
GEMMs have been observed [13]. In the context of evaluating
drug response, these differences are likely to have a significant
impact because TAMs have been suggested to augment tumor
angiogenesis, invasion, and matrix remodeling, modulate drug
delivery, and modulate the host antitumor immune response.
Given these multiple differences in the reaction of diverse stro-
mal elements, the ability to more faithfully model the stroma–
tumor interaction appears to be a particular strength of
GEMMs over xenograft assays. OST models have not been as
well characterized, and their predictive ability compared with
those of GEMMs and xenografts is an area of ongoing inves-
tigation.

Given these important differences among these various
preclinical models, we tested the ability of xenograft models,
OST models, and GEMMs of melanoma to accurately recapit-

ulate the tumor disposition of carboplatin, a widely used anti-
cancer agent with activity in melanoma. The use of
microdialysis probes placed within tumors allowed us to eval-
uate the concentration-versus-time profile of carboplatin
within each individual tumor in patients and animal models
following i.v. administration of carboplatin. Results from these
tumor models were compared with tumor disposition of carbo-
platin in human patients with cutaneous melanoma. This strat-
egy allowed for a determination of which preclinical murine
models best predicted intratumoral carboplatin PKs in humans.

MATERIALS AND METHODS

Mice
All mice were handled in accordance with the National Re-
search Council’s Guide to the Care and Use of Laboratory An-
imals (1996), and studies were approved by the Institutional
Animal Care and Use Committee at the University of North
Carolina (UNC) at Chapel Hill. Four mouse models of mela-
noma were used for this study including a tyrosinase-H-
RasG12V INK4A�/�/ARF�/� (TRIA) GEMM of melanoma
(on an FVB/N background) [14], a TRIA OST mouse model
(TRIA tumor cells implanted into the flank of male FVB/N
mice), a B16 murine melanoma OST model, and an A375
xenograft model. The term OST is defined in this study as a
mouse melanoma cell line implanted into an immunocompe-
tent mouse and is used to distinguish from a true xenograft.
C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME) were
used for the B16 murine melanoma OST model. FVB/N mice
(Jackson Laboratory) were used for the TRIA OST model.
NU-Foxn1nu homozygous (nu/nu) immunodeficient mice
were used for the A375 xenograft model (Charles River, Wil-
mington, MA). All mice were allowed to acclimate to the an-
imal facilities at UNC for 1 week prior to initiation of the study.
All mice were housed in microisolator cages and allowed Te-
klad LM-484 autoclavable rodent chow (Harlan Tekla Diets,
Madison, WI) or ISDPRO RMH3000 irradiated rodent chow
(PMI Nutrition International, Inc., Brentwood, MO) and water
ad libitum. Tumor size and body weight were determined twice
weekly and clinical observations were made twice daily.

Tumor Lines and GEMM Tumors
B16 murine melanoma cells and A375 human melanoma cells
were obtained from the American Type Culture Collection.
The TRIA cell line was described previously and was grown
under routine sterile cell culture conditions until subconfluent
[15]. B16 and TRIA tumor cells were grown in Dulbecco’s
Modified Eagle Medium (Life Technologies, Grand Island,
NY), supplemented with 10% heat-inactivated fetal bovine se-
rum, and incubated at 37°C in 5% CO2. Cells were allowed to
grow to 80% confluence and were harvested with 0.25% tryp-
sin/1 mM EDTA. In total, 2 � 106 cells in 200 �L were im-
planted s.c. into the right flank of C57BL/6, FVB, and nu/nu
mice. The size of the tumor and rate of growth were monitored
by calipers until reaching the desired size (1,000–1,500 mm3)
for inclusion in the study. Tumor volume was calculated using
the equation: length � (width)2/2, where length is the largest
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diameter and width is the smallest diameter perpendicular to
the length. In all models, PK and microdialysis studies were
performed when tumors were �1,000–1,500 mm3 in size.

Plasma and Tumor PK Studies in Mice
Carboplatin was administered at 50 mg/kg i.v. � 1 via the tail
vein to all mouse models. Because of limited blood volume,
plasma and plasma ultrafiltrate PK studies were performed in
one cohort of mice and microdialysis studies were performed
in a separate cohort of mice, matched for strain, age, sex, and
weight. For plasma PK studies of the B16 OST model, blood
samples (n � 3 mice at each time point) were collected at 0,
0.083, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, 17, and 24 hours after ad-
ministration. For plasma PK studies of the A375 xenograft
model, GEMM, and TRIA OST model, blood samples (n � 3
mice at each time point) were collected at 0, 0.083, 0.5, 1, 3,
and 6 hours after administration. Sample collection was
changed following the B16 OST plasma PK studies to preserve
mice because plasma levels at hours 17 and 24 were virtually
undetectable. Additionally, other sample time points that did
not provide added value in estimating the PK parameters were
eliminated. For all studies, blood samples were collected via
cardiac puncture in lithium-heparin tubes and centrifuged at
1,200g at 4°C � 15 minutes. A 150-�L aliquot of the resulting
plasma was ultrafiltered by centrifuging in Amicon Centrifree
micropartition devices (Amicon Division, W.R. Grace, Bev-
erly, MA) at 2,000g at 20°C � 30 minutes as described by our
lab previously [16]. Plasma ultrafiltrate and plasma samples
were snap frozen in liquid nitrogen and then stored at �80°C
until analyzed.

For the microdialysis studies, a total of six mice were ana-
lyzed for each mouse model of melanoma, except for the A375
xenograft model, for which seven mice were analyzed. Prior to
administration of carboplatin, mice were weighed and anesthe-
tized with ketamine/medetomidine at 100/1 mg/kg and moni-
tored throughout the experiment by UNC veterinary
technicians. Commercially available microdialysis probes
(CMA20, Stockholm, Sweden) with a molecular cutoff of 20
kDa, membrane length of 4 mm, and outer diameter of 0.5 mm
were used [16]. The molecular cutoff of the 20-kDa probe al-
lowed only protein-unbound platinum (Pt) to cross the semi-
permeable membrane. Microdialysis probes were inserted �6
mm into the tumor, held in place with surgical glue, and al-
lowed to equilibrate with the surrounding tumor extracellular
fluid (ECF) for 45 minutes prior to carboplatin administration
(Fig. 1). Carboplatin was then i.v. administered at 50 mg/kg �
1 via the tail vein in all mouse models. Tumor ECF samples
were collected every 40 minutes from 0–4 hours. The samples
collected were in tumor ECF and were defined as protein-
unbound Pt, which is the active form. The microdialysis probe
was perfused using a microdialysis microperfusion pump
(CMA 102; CMA, Stockholm, Sweden) at a flow rate of 2 �L/
minute. Iridium (Ir) (1,000 ng/mL) in phosphate-buffered sa-
line was used as the marker compound to determine in vivo
recovery for all mouse models. Dialysate samples were col-
lected using a microfraction collector (CMA 142; CMA,
Stockholm, Sweden).

Ir was determined to be an appropriate microdialysis re-
covery standard for carboplatin where Pt was the analyte of
interest because of the similar molecular weight relation-
ship between Ir (192 g/mol) and Pt (195 g/mol). Ir concen-
trations were measured from the perfusate pump syringes
and were used to calculate Ir loss fraction. Corrected Pt con-
centrations in mice tumor ECF were calculated by the equa-
tion:

Pt (measured from tumor ECF sample)/Ir loss fraction.
Where Ir loss fraction � (Ir measured from syringe � Ir

recovered in sample)/Ir measured in pump syringe.
Four hours was determined to be the most feasible sample

duration because it was difficult to keep mice anesthetized for
longer periods of time and limited drug exposure in tumors re-
mained after 4 hours. Probe placement was visually confirmed
at necropsy to ensure that the probe was entirely within the
tumor.

The Pt concentration measured in each tumor ECF sample
was the average concentration of the collection interval, and
thus the midpoint of that interval was used to calculate PK pa-
rameters (20 minutes was used for a sample collected from
0–40 minutes). All microdialysis samples were stored at 4°C
until analyzed for Pt by inductively coupled plasma mass spec-
trometry (ICP-MS).

Sample Processing and Analysis
For all mouse models, 50 �L plasma and plasma ultrafiltrate
were added to a 70% nitric acid (HNO3) solution containing a
200-ng/mL solution of Ir as the analytical internal standard. In
the microdialysis studies, 50 �L tumor ECF sample was added
to 70% HNO3 with indium used as the internal standard be-
cause Ir was used as the microdialysis recovery standard. The
samples were heated at 90°C for 30 minutes. Two milliliters
2% HNO3 was then added to the samples. The samples were
analyzed via ICP-MS as described previously [17]. The lower
limit of detection of Pt of all forms in plasma and tumor ECF
was 0.1 ng/mL.

Plasma and Tumor ECF PK Studies in Patients
The data in our current study are expanded from the first study
in patients performed by Blöchl-Daum et al. [18]. Briefly, pa-
tients (n � 6) with cutaneous metastatic melanoma were
treated with carboplatin at a dose of 400 mg/m2 i.v. over 20
minutes on day 1 of cycle 1. Plasma PK studies and microdi-
alysis were completed within the same patients. Three-millili-
ter blood samples were collected prior to administration and at
0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5,
3.75, and 4 hours after the start of the infusion. Tumor ECF
samples were collected every 15 minutes for 4 hours.
Plasma samples were processed for the determination of to-
tal Pt concentration as described previously using flameless
atomic absorption spectroscopy (FAAS) [19, 20]. Microdi-
alysis was used to evaluate the disposition of Pt in tumor
ECF using a CMA 10 (CMA, Stockholm, Sweden) micro-
dialysis probe with a molecular cutoff of 20 kDa, outer di-
ameter of 500 �m, and membrane length of 16 mm. A
precision infusion pump (Precidor; Ilfors-AG, Basle, Swit-
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zerland) with Ringer’s solution as the perfusion fluid at a
flow rate of 1.5 �L/minute was used to obtain samples at
every 15 minutes for 4 hours. The unbound Pt in tumor ECF
was measured using FAAS.

PK Analysis
A noncompartmental PK analysis was performed for all tissues
in both animal and human melanoma models using WinNonlin
Software, version 5.0 (Pharsight Corp., Mountain View, CA).
The Pt area under the concentration versus time curve from
time 0 to the last measured concentration (AUC0–last) and to
infinity (AUC0–�) were calculated for carboplatin in plasma
and tumor ECF. Clearance, volume of distribution, elimination
rate (ke), and elimination half-life (t1/2) were also calculated for
plasma, plasma ultrafiltrate, and tumor ECF using standard
equations. WinNonlin preset programming selected the termi-
nal elimination phase and was used to extrapolate from the last
measurable concentration (tlast) to infinity. Tumor penetration
was calculated as the ratio of tumor ECF Pt AUC0 –last to
plasma total Pt AUC0 –last and to plasma ultrafiltrate Pt
AUC0–�. In addition to comparing the unscaled PK parameters
between mouse models and patients, we also compared allo-
metrically scaled PK parameters. Allometric scaling is a tech-
nique used to extrapolate the first-in-human dose during drug
development when only animal PK data are available, as well
as to compare the disposition of drugs across species [21]. Al-
lometric scaled data were calculated based on the Dedrick time
equivalent model [22]. Using standard methods, plasma and
tumor concentrations were normalized by dividing by dose in
mg/kg, which allows appropriate plot scaling between mice
and humans [21]. In addition, using standard methods, time
was normalized by dividing actual time by body weight0.25,
where 0.25 represents a constant for the conversion from chro-
nological to physiological time.

Statistical Analysis
Descriptive statistics, including the mean � standard devi-
ation (SD), were performed on plasma and tumor ECF PK
parameters of carboplatin in mouse models and in patients
with cutaneous melanoma. PK parameters were evaluated

with t tests to determine if mouse model PK parameters dif-
fered significantly from patient AUC when unscaled and al-
lometrically scaled. Statistical significance was defined as a
p-value � .05. All statistical analyses were performed using
SAS software, version 9.1 (SAS Institute, Cary, NC).

RESULTS

Mouse Model Plasma PKs
We evaluated the plasma and tumor dispositions of carboplatin
in four murine models of melanoma compared with those in
patients with cutaneous melanoma. The models used in this
analysis were the A375 human melanoma cell line xenografted
into SCID (NU-Foxn1nu) mice, the B16 murine melanoma cell
line transplanted into syngeneic C57BL/6 mice (OST model),
TRIA cell lines transplanted into syngeneic FVB/n mice (OST
model), and autochthonous TRIA tumors on an FVB/n back-
ground (GEMM). The SCID mice lack normal B- and T-lym-
phocyte function, whereas OST and GEMM mice are
immunocompetent. The mean unscaled Pt concentration-ver-
sus-time profiles of plasma and plasma ultrafiltrate for each
mouse strain and for patients are presented in Figure 2. Addi-
tionally, the unscaled plasma PK parameters calculated for
each cohort are presented in Table 1.

The total (protein bound and protein unbound) Pt maxi-
mum concentration (Cmax) values in plasma of NU-Foxn1nu,
C57BL/6, and FVB/N (representing both the TRIA GEMM
and OST models) were 63.2 �g/mL, 105.6 �g/mL, and 51.4
�g/mL, respectively. The total Pt AUC0–last values in plasma
of NU-Foxn1nu, C57BL/6, and FVB/N were 26.5 �g/mL�hour,
44.9 �g/mL�hour, and 28.1 �g/mL�hour, respectively. The
plasma ultrafiltrate (protein unbound) Pt concentration-ver-
sus-time profile and PK parameters were very similar to the
total plasma Pt because the majority of the Pt was not bound to
proteins in systemic circulation (Fig. 2B, Table 1).

Mouse Model Tumor Carboplatin Disposition
Microdialysis is an in vivo sampling technique used to study
PKs and drug metabolism in the blood and ECF of various tis-
sues [23–25] and is based on the diffusion of nonprotein-bound

Figure 1. Depiction of in vivo microdialysis setup. (A): Microdialysis pump, fraction collector robot, and test animal. (B):
Close-up view of microdialysis probe placement in a tyrosinase-H-RasG12V INK4A�/�/ARF�/� genetically engineered mouse
model ear tumor.
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drugs from interstitial fluid across the semipermeable mem-
brane of the microdialysis probe [23–25]. Microdialysis pro-
vides a means to obtain serial samples from tumor ECF, from
which a concentration-versus-time profile can be determined
within a single tumor [18, 23, 26]. Using the microdialysis
technique, the tumor carboplatin disposition in all mouse mod-
els was measured (Fig. 1). The mean unscaled Pt concentra-
tion-versus-time profiles of tumor ECF for all models of
melanoma are presented in Figure 3. Individual concentration-
versus-time profiles of tumor ECF in all melanoma models in
relation to the mean total plasma Pt concentration-versus-
time curves are presented in Figure 4. The mean � SD Pt
Cmax values in tumor ECF for the A375 xenograft model,
B16 OST model, TRIA OST model, and GEMM were 2.4 �
1.0 �g/mL, 22.0 � 25.5 �g/mL, 25.5 � 11.5 �g/mL, and
13.9 � 5.8 �g/mL, respectively. The Pt AUC0 –last values in
tumor ECF for the A375 xenograft model, B16 OST model,
TRIA OST model, and GEMM were 3.7 � 1.8 �g/mL�hour,
29.2 � 25.5 �g/mL�hour, 23.7 � 10.4 �g/mL�hour, and

24.1 � 9.9 �g/mL�hour, respectively. Tumor ECF AUC and
Cmax values were similar across groups, except for the A375
mouse model.

Patient Plasma and Tumor PKs
In patients with cutaneous melanoma, the mean � SD unscaled
total Pt Cmax in plasma was 14.6 � 2.6 �g/mL. The mean un-
scaled Pt AUC0–last in tumor ECF was 26.4 � 6.6 �g/mL�hour.
The ratios of A375 xenograft, B16 OST, TRIA OST, and
GEMM tumor ECF Pt Cmax to patient tumor ECF Pt Cmax were
0.3, 2.9, 3.4, and 1.8, respectively. The ratios of A375 xeno-
graft, B16 OST, TRIA OST, and GEMM tumor ECF Pt
AUC0–last to patient tumor ECF Pt AUC0–last were 0.25, 2.00,
1.62, and 1.65, respectively.

Allometrically Scaled Plasma and Tumor PKs
Mean concentration-versus-time curves for allometrically
scaled total plasma Pt, plasma ultrafiltrate, and tumor ECF are

Table 1. PK parameters of Pt after intravenous administration of carboplatin in different models of melanoma

Melanoma model
Cmax
(�g/mL)

AUC0-last
(�g/mL�hour)

AUC0-�
(�g/mL�hour)

ke

(hours)

t1/2
(hours)

Volume of
distribution
(mL/m2 in
patients, mL/g
in mice)

Clearance
(mL/hour/m2

in patients,
mL/hour/g in
mice)

MRTlast
(�g/mL�hour)

AUCTumor ECF/
AUCPlasma total

AUCTumor ECF/
AUCPlasma UF

Patients

Plasma (mean �
SD)

14.55 � 2.58 26.43 � 6.62 37.65 � 13.81 0.36 � 0.10 2.09 � 0.63 33.13 � 5.32 12.02 � 4.81 1.49 � 0.20 0.56 –

Tumor ECF
(mean � SD)

7.58 � 4.89 14.61 � 6.69 20.91 � 9.76 0.38 � 0.12 1.98 � 0.61 – – 1.71 � 0.20

TRIA GEMM

Plasmab,c 51.44 28.05 28.50 0.79 0.88 2.23 1.75 0.62 1.02 1.14

Plasma UFb,c 54.65 25.32 25.39 0.80 0.87 2.47 1.97 0.43

Tumor ECF
(mean � SD)

13.91 � 5.84 24.08 � 9.93 28.97 � 11.68 0.61 � 0.29 1.32 � 0.48 – – 1.49 � 0.35

TRIA OST

Plasmab,c 51.44 28.05 28.50 0.79 0.88 2.23 1.75 0.62 0.86 0.97

Plasma UFb,c 54.65 25.32 25.39 0.80 0.87 2.47 1.97 0.43

Tumor ECF
(mean � SD)

25.47 � 11.45a23.70 � 10.40 24.53 � 10.63 1.02 � 0.37a 0.96 � 0.81a – – 0.89 � 0.17

B16 OST

Plasmab 105.58 44.92 49.28 0.06 11.85 17.38 1.02 5.59 0.65 0.97

Plasma UFb 98.75 33.17 33.28 0.97 0.72 1.56 1.51 0.47

Tumor ECF
(mean � SD)

21.98 � 25.48 29.17 � 25.53 32.25 � 23.14 0.79 � 0.34a 1.04 � 0.39a – – 1.43 � 0.47

A375 xenograft

Plasmab 63.20 26.46 27.57 0.34 2.03 5.31 1.81 0.46 0.14 0.17

Plasma UFb 58.62 22.95 23.14 0.53 1.31 4.07 2.16 0.28

Tumor ECF
(mean � SD)

2.36 � 1.01a 3.66 � 1.77a 3.82 � 1.86a 0.60 � 0.25 1.50 � 1.05 – – 1.58 � 0.60

aStatistically different from human PKs.
bMean plasma and plasma UF PK parameters were calculated via the destructive sampling method and thus there is only
one value per group. For tumor ECF, mean and SD are reported.
cBecause both the TRIA GEMM and TRIA OST model were in male FVB mice as the backbone, plasma and plasma UF PK
parameters are the same. AUC0-last for plasma is from 0–24 hours in the B16 OST model and patients and from 0–6 hours
in the GEMM and TRIA OST model. AUC0-last for tumor ECF is from 0–4 hours in all models.
Abbreviations: AUC, area under the concentration versus time curve; Cmax, maximum concentration; ECF, extracellular
fluid; GEMM, genetically engineered mouse model; MRT, mean residence time; OST, orthotopic syngeneic transplant; PK,
phamacokinetics; Pt, platinum; SD, standard deviation; TRIA, tyrosinase-H-RasG12V INK4A�/�/ARF�/�; UF,
ultrafiltrate.
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shown in Figure 5A, 5B, and 5C, respectively. Scaled sum-
mary PK data are presented in Table 2. The allometrically
scaled total Pt Cmax values in plasma for NU-Foxn1nu,
C57BL/6, and FVB/N were 1.26 (�g/mL)/(mg/kg), 2.11 (�g/
mL)/(mg/kg), and 1.03 (�g/mL)/(mg/kg), respectively. The al-
lometrically scaled total Pt AUC0–last values in plasma for NU-
Foxn1nu, C57BL/6, and FVB/N were 1.27 [(�g/mL)/(mg/
kg)]�(hours/kg)], 2.39 [(�g/mL)/(mg/kg)]�(hours/kg)], and
1.35 [(�g/mL)/(mg/kg)]�(hours/kg)], respectively. The
mean � SD allometrically scaled Pt Cmax values in tumor ECF
for the A375 xenograft model, B16 OST model, TRIA OST
model, and GEMM were 0.05 � 0.02 (�g/mL)/(mg/kg),
0.44 � 0.56 (�g/mL)/(mg/kg), 0.43 � 0.19 (�g/mL)/(mg/kg),
and 0.28 � 0.12 (�g/mL)/(mg/kg), respectively. The allo-
metrically scaled Pt AUC0 –last values in tumor ECF for the
A375 xenograft model, B16 OST model, TRIA OST model,
and GEMM were 0.18 � 0.85[(�g/mL)/(mg/kg)]�(hours/kg)],
1.40 � 1.24[(�g/mL)/(mg/kg)]�(hours/kg)], 1.04 � 0.52[(�g/
mL)/(mg/kg)]�(hours/kg)], and 1.16 � 0.48 [(�g/mL)/(mg/
kg)]�(hours/kg)], respectively.

In patients with cutaneous melanoma, the mean � SD al-
lometrically scaled total Pt Cmax in tumor was 0.7 � 0.45 (�g/

mL)/(mg/kg). The mean allometrically scaled Pt AUC0–last in
tumor ECF was 1.35 � 0.62 [(�g/mL)/(mg/kg)]�(hours/kg).
The ratios of A375 xenograft, B16 OST, TRIA OST, and
GEMM allometrically scaled tumor ECF Pt Cmax to patient tu-
mor ECF Pt Cmax were 0.07 [(�g/mL)/(mg/kg)]�(hours/kg),
0.63 [(�g/mL)/(mg/kg)]�(hours/kg), 0.61 [(�g/mL)/(mg/
kg)]�(hours/kg), and 0.40 [(�g/mL)/(mg/kg)]�(hours/kg), re-
spectively. The ratios of A375 xenograft, B16 OST, TRIA
OST, and GEMM allometrically scaled tumor ECF Pt
AUC0–last to patient tumor ECF Pt AUC0–last were 0.13,1.04,
0.77, and 0.86, respectively.

Statistical Comparison of Mouse Models and
Patients
When comparing the tumor ECF PK parameters of Pt in dif-
ferent mouse models with tumor ECF PK parameters of Pt in
patients, GEMMs had no PK parameter (allometrically
scaled or unscaled) that was significantly different (p � .05)
from that of patients. The unscaled and allometrically
scaled Pt AUC0 –�, AUC0 –last, and Cmax of A375 xenografts
were significantly different from those of patients (un-
scaled: p � .007, .009, and .047, respectively; allometri-
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cally scaled: p � .005, .005, and .016, respectively). The
mean unscaled Pt ke and t1/2 of B16 OSTs were significantly
different from those of patients (p � .04 and .01, respec-
tively). The mean unscaled Pt ke, t1/2, and Cmax of TRIA
OSTs were significantly different from those of patients
(p � .01, .04, and .02, respectively). No allometrically
scaled PK parameters of TRIA or B16 OSTs were signifi-
cantly different from those of patients.

DISCUSSION
Although multiple differences among GEMMs, OST models,
and xenograft models have been described [1–4], there have
been no direct comparisons of tumor drug disposition among
these models. To date, most of the focus has been on differ-
ences in tumor genetics, heterogeneity, and the microenviron-
ment [7, 9 –13]. To evaluate potential differences in drug
exposure, we evaluated four mouse models of melanoma, rep-
resenting xenografts (human tumor cells into immunodeficient
mice), OSTs (murine cell lines into syngeneic, immunocom-
petent mice), and GEMMs (de novo tumors studied in situ),
and compared their intratumoral drug dispositions with those
measured in patients with cutaneous melanoma. As part of the
study design, we included two OST models, the B16 OST
model and the TRIA OST model. The TRIA OST model was
used to control for differences in tumor biology and strain
when making comparisons with the TRIA GEMM, and thus
allowed us to isolate our analysis to transplanted versus au-
tochthonous tumors.

The allometrically scaled carboplatin plasma PKs of all
mouse models and humans were similar (Fig. 5A), suggest-

ing that carboplatin plasma PKs are scalable from mouse to
man. Despite this similarity in plasma PKs, the carboplatin
concentrations in tumors from the xenograft model (A375)
were significantly different from the tumor ECF PKs in the
TRIA GEMM and patient melanoma tumors (Fig. 5C). For
example, the murine-to-human tumor ECF AUC ratio was
0.13 for the xenograft model, versus 0.86 for the GEMM.
The OST results were closer to the human values than those
seen in the xenograft model, but the tumor ECF concentra-
tion and elimination profile of the GEMM most accurately
recapitulated those seen in patients (Fig. 3). It is important
to note that no mouse model was able to exactly mirror the
human counterpart; however, the GEMM appeared to best
approximate human tumor exposure.

Although the objective of the current study was limited to
evaluating potential differences in intratumoral drug disposi-
tion among mouse models used in preclinical oncology drug
development, there are several possible physiological differ-
ences among these models that may explain our findings. Par-
ticularly, the ability to more faithfully model the stroma–tumor
interaction appears to be a considerable strength of GEMMs,
which may explain their superior ability to recapitulate tumor
drug disposition seen in patients, versus transplanted tumors. It
is easy to appreciate that xenograft models do not accurately
recapitulate this aspect of cancer biology, because fully trans-
formed cells are injected as a bolus into a stroma that is de-
ranged and disorganized by the ectopic transplant of a large
number of foreign cells. In contrast, the neoplastic cells of
GEMM tumors form in a stepwise manner in the setting of an
appropriately responsive tumor microenvironment, similar to
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in situ human tumors. Additionally, interactions between tu-
mor cells and various components of the surrounding microen-
vironment, including inflammatory cells, vascular and
lymphatic networks, and the extracellular matrix, are thought
to play critical roles in the tumor drug response and, likely, tu-
mor drug disposition [10].

Olive et al. [7] recently showed that pancreatic cancer
GEMMs, like human pancreatic cancers, are generally re-
sistant to gemcitabine chemotherapy. In contrast, they
found that gemcitabine demonstrated considerable efficacy
in a pancreatic OST model established from their GEMM.
Upon further investigation, the authors demonstrated that
gemcitabine exposure in the tumor correlated with tumor re-
sponse. GEMM tumors had low exposure and response and
OSTs had significantly higher gemcitabine exposure and re-
sponse. Thus, it was concluded that chemoresistance does
not appear to be cell autonomous, because transplantation of
cell lines derived from pancreatic cancer GEMMs into a
syngeneic flank increased the sensitivity of these tumors to
gemcitabine. Instead, the chemoresistance of the autochtho-
nous pancreatic GEMM appears to be a reflection of subop-
timal drug delivery into their fibrotic and poorly
vascularized tumors.

This result is similar to our results reported here, in that in-
tratumoral drug levels within the GEMM, rather than xeno-
graft tumors, more closely resembled those in patients.
However, one important distinction between these two studies
is the fact that we found higher drug levels in the GEMM than

in the xenograft, whereas, Olive et al. [7] reported lower drug
levels in the GEMM than in the xenograft. Although the results
from Olive et al. [7] evaluating gemcitabine in pancreatic
mouse models and the current study evaluating carboplatin in
melanoma mouse models both demonstrate that GEMMs bet-
ter model intratumoral drug levels, it is unclear if these results
can be extrapolated to other drugs and tumor types. Differ-
ences in tumor PK results may be a result of the drug (e.g., pro-
tein binding with carboplatin), tumor type (pancreatic versus
melanoma), or PK measurement (tumor homogenate versus tu-
mor ECF). However, despite these differences, the collective
observations suggest that tumor stroma plays an important role
in drug delivery and tumor response. In summary, this novel
comprehensive analysis of intratumoral PKs suggests dramatic
differences between the measured concentrations of an active
anticancer agent in murine models and human patients. These
data highlight an important limitation of murine models with
regard to preclinical efficacy assessment, and ongoing efforts
will attempt to determine the physiologic basis for the differ-
ences between transplanted and in situ tumors with regard to
drug exposure. In particular, these results suggest that GEMMs
may be the most faithful predictor of tumor PKs of carboplatin
in patients with melanoma. In addition, these studies suggest
that ongoing preclinical testing of anticancer agents should be
designed with consideration of these models’ abilities to rep-
resent intratumoral drug disposition in patients with solid tu-
mors.
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Table 2. Allometrically scaled PK parameters of Pt after intravenous administration of carboplatin in different models of
melanoma

Melanoma model

Cmax
(�g/mL)/(mg/
kg)

AUC0-last
�(�g/mL)/(mg/kg)	�
(hours/kg)

AUC0-�
�(�g/mL)/(mg/kg)	�
(hours/kg)

ke
(hours/kg)

t1/2
(hours/kg)

Volume of
distributions (mL/
m2 in patients, mL/
g in mice)

Clearance (mL/m2 in
patients, mL/hour/g)

MRTlast
�(�g/mL)/(mg/kg)	�
(hours/kg)

Patients

Plasma (mean �
SD)

1.35 � 0.24 0.86 � 0.22 1.23 � 0.45 1.01 � 0.29 0.74 � 0.22 357.57 � 56.89) 368.88 � 147.71 0.58 � 0.07

Tumor ECF
(mean � SD)

0.70 � 0.45 1.35 � 0.62 1.94 � 0.90 0.38 � 0.12 1.98 � 0.61 – – 1.70 � 0.20

TRIA GEMM () ()

Plasmab,c 1.03 1.35 1.37 0.33 2.12 111.66 36.53 1.49

Plasma UFb,c 1.09 1.22 1.22 0.34 2.06 121.80 41.03 1.03

Tumor ECF
(mean � SD)

0.28 � 0.12 1.16 � 0.48 1.39 � 0.56 0.25 � 0.12 3.17 � 1.16 – – 2.21 � 0.37

TRIA OST—-

Plasmab,c 1.03 1.35 1.37 0.33 2.12 111.66 36.53 1.49

Plasma UFb,c 1.09 1.22 1.22 0.34 2.06 121.80 41.03 1.03

Tumor ECF
(mean � SD)

0.43 � 0.19 1.04 � 0.52 1.08 � 0.53 0.45 � 0.06 1.57 � 0.22 – – 3.57 � 0.85

B16 OST

Plasmab 2.11 2.39 2.62 0.02 31.51 869.35 19.12 5.89

Plasma UFb 1.98 1.76 1.77 0.37 1.86 76.00 28.33 1.24

Tumor ECF
(mean � SD)

0.44 � 0.56 1.40 � 1.24 1.55 � 1.22 0.33 � 0.15 2.50 � 1.04 – – 3.43 � 1.24

A375 xenograft

Plasmab 1.26 1.27 1.33 0.14 4.88 265.52 37.73 1.11

Plasma UFb 1.17 1.10 1.11 0.22 3.14 203.38 44.96 0.68

Tumor ECF
(mean � SD)

0.047 � 0.02a 0.18 � 0.085a 0.18 � 0.09a 0.25 � 0.11 3.61 � 2.50 – – 3.80 � 1.44

aStatistically different from human PKs.
bMean plasma and plasma UF PK parameters were calculated via the destructive sampling method. For tumor ECF, mean
and standard deviation are reported.
cBecause both the TRIA GEMM and TRIA OST model were in male FVB mice as the backbone, plasma and plasma UF PK
parameters are the same. AUC0–last for plasma is from 0–24 hours and AUC0–last for tumor ECF is from 0–4 hours in all
models. AUC0–last for plasma is from 0–24 hours and AUC0–last for tumor ECF is from 0–4 hours in all models.
Abbreviations: AUC, area under the concentration versus time curve; Cmax, maximum concentration; ECF, extracellular
fluid; GEMM, genetically engineered mouse model; MRT, mean residence time; OST, orthotopic syngeneic transplant; PK,
phamacokinetics; Pt, platinum; SD, standard deviation; TRIA, tyrosinase-H-RasG12V INK4A�/�/ARF�/�; UF,
ultrafiltrate.
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